CHEMICAL AND IONIC EQUILIBRIUM

Nature of Equilibrium

- Reactions which never go to completion and travel back-forth are said to be at equilibrium.
- Catalyst cannot change the direction of reaction
- Eqm is affected by Conc., P, T, V etc.

For a reaction,
$$\mathbf{mA} + \mathbf{nB} \leftrightharpoons \mathbf{pC} + \mathbf{qD}$$

 $\mathbf{k_f} = [\mathbf{C}]^p[\mathbf{D}]^q$ and $\mathbf{k_b} = [\mathbf{A}]^m[\mathbf{B}]^n$

k = rate constant of forward reactionk = rate of backward reaction

k = rate of backward reaction

At Equilibrium,
$$k_f = k_b$$
 and $k_f / k_b = K_{eq}$

$$f_b K_c = \frac{[C]^p[D]^q}{[A]^m[B]^n}$$
 [] = represents concentration

$$K_{p} = \frac{(p_{C})^{p}(p_{D})^{q}}{(p_{A})^{m}(p_{B})^{n}}$$
 | p = partial Pressure also, p = x x P_T

Relation between K_c, K_n, K_v

$$K_p = K_c (RT)^{\Delta n_g} = (P_T)^{\Delta n_g} K_x$$

Case I: $n_p > n_r$; $\Delta n_g > 0$; $K_p > K_c$

Case II : $n_p < n_r$; $\Delta n_g < 0$; $K_p < K_c$

K also confirms the stability of Reactants and Products

K个 = Products Stable

K↓ = Reactants Stable

Factors Affecting K

Temperature (According to Van't Hoff equation)

$$\log\left(\frac{K_2}{K_1}\right) = \frac{\Delta H^\circ}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2}\right] \quad \text{ (Here T}_2 > T_1)$$

 $\Delta H = +ve$ (Endothermic); $K_2 > K_1$

 $\Delta H = -ve (Exothermic); K_1 > K_2$

Stoichiometry of a reaction and representation

For a reaction aA + bB ⇒ cC + dD, Eq. Constant K₁

- 1. Multiply reaction by 2: K₁²
- 2. Divide Reaction by 2: K₁^{1/2}
- 3. Reverse the reaction: 1/K1
- 4. Add Equation with Eq. constant K2 = K1.K2
- 5. Subtract Equation with Eq. constant K2 = K1/

Reaction Quotient

For a reaction aA + bB ⇌ cC + dD, Eqm Constant : K

At a stage other than eqm. Q > K : Form Reactants

 $Q_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$ Q < K : Form Products Q = K : Equilibrium

Degree of Dissociation (0< α <1)

Fraction of initial molecules that are converted at egm.

Case I: aA

⇒ bB If Initial moles = 2

n (Eq.) 2-ax bx Degree of diss. $\alpha = ax/2$

Case II: $aA + bB \rightleftharpoons cC + dD$ If Initial A=3; B=2 n (Eq.) 3-ax 2-bx cx dx DOD $(\alpha_A) = ax/3$

Relation between Vapour Density and lpha

 $\alpha = \frac{\text{D-d}}{\text{d(n-1)}} \quad \begin{array}{l} \text{D = Vapour Density of Reactant} \\ \text{d = Vapour Density of Eqm. Mixture} \\ \alpha = \text{degree of dissociation} \end{array}$

• n ≠ 1

 It is the sum of stoichiometric coefficients of the product side

• eg: $NH_3 \rightleftharpoons \frac{1}{2}N_2 + \frac{3}{2}H_2$

Here, n = 1/2 + 3/2 = 2

Simultaneous Equilibrium

- If, there are two or more eqm. existing simultaneously involving one or more than one common species.
- Then, conc. of common species = total concentration in all eqm.

Relation between Standard Gibbs Free Energy and K

$\Delta G^{o} = -$	-2.303nR	$T \log K = -nRT \ln K$
$\Delta G^{\circ} < 0$	K>1	Spontaneous Reaction
$\Delta G^{\circ} > 0$	K<1	Non-Spontaneous Reaction
$\Delta G^{\circ} = 0$	K=0	Equilibrium

Le-Chatlier's Priniciple

When a simple system in equilibrium is subjected to a change in Conc., T, V, or P.

- (1) the system changes to a new equilibrium
- (2) this change partly counteracts the applied change.

Control of the Contro	
Concentration	↑ Reactants - Forward Reaction ↑ Products - Backward Reaction
Temperature	Endothermic : 个Temp - Forward Exothermic : 个Temp - Backward
Catalyst	BORRINGGGNO EFFECT
Pressure	↑ Pressure : Towards Lower moles ↓ Pressure : Towards Higher moles
Inert Gas	At Constant P, Towards Higher Moles At Constant V, NO Effect

Are you Getting my point? Henry Louis Le Chatelier

Electrolytes and Non Electrolytes

Electrolytes - Which dissociate into ions

Strong Elec.
(a=1)

• All strong acids and salts (HCl, HNO₃) etc.

All Alkali metal hydroxides and Ba(OH)₂

Weak Elec. (0< α <1)

 HNO₂, H₂SO₃, HCIO, All oxy acids of P, All organic acids, HCN, H₃BO₃, H₂CO₃ etc.

 All Alkaline hydroxides except Ba(OH)₂, All organic bases, D-series hydroxides.

Theories of acids and bases

Theory	Arrhenius	Bronsted	Lewis
ACIDS	Donates H ⁺	Donates H ⁺	Lone Pair Acceptor
BASES	Donates OH	Accepts H+	Lone Pair Donor

NOTE

Strong Acid → H⁺ + Weak Conjugate base

and

• Strong Base + $H^+ \rightarrow$ Weak Conjugate base

VICE VERSA

Amphiprotic acids are H⁺ donor and acceptor, H₂CO₃

Ionic product of water

At 25°C,
$$K_w = [H^+][OH^-] = 10^{-14}$$

For Pure water, $[H^+] = [OH^-] = 10^{-7}$

 $\mathbf{K}_{\mathbf{w}}$ increases with increase in temperature.

pH Calculation

$$pH = -log[H^+]$$

pOH = -log[OH-]

At 25°C,
$$pH + pOH = pK_W$$

Case I : Strong acids/bases with $[H^+] \ge 10^{-6}$

Directly take the log of concentration of H⁺

Case II: Strong acids/bases with [H+] < 10-6

pH =
$$-\log (H^{+}_{acid} + H^{+}_{water})$$
 Here, $H^{+}_{water} = 10^{-7}$

Case III: Mixture of Strong acids/bases

Two Strong Acids

 $[H^+] = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$

Two Strong Bases

$$[OH^{-}] = \frac{N_1V_1 + N_2V_2}{V_1 + V_2}$$

Case IV: Case of Weak mono acids and bases

For a weak acid, $HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$

$$\mathrm{K_a} = \frac{[\mathrm{H^+}][\mathrm{A}^-]}{[\mathrm{HA}]} = \frac{\mathrm{c}\alpha \times \mathrm{c}\alpha}{\mathrm{c}(1-\alpha)} = \frac{\mathrm{c}\alpha^2}{1-\alpha} \quad \begin{array}{l} \text{More the value} \\ \text{of Ka , Stronger} \\ \text{is the acid} \end{array}$$

$$1-\alpha \approx \alpha = \sqrt{\frac{K_a}{c}}$$
 α = Degree of Dissociation c = Concentration of HA

$$pH = -\log_{10}\sqrt{K_ac} = \frac{1}{2}(pK_a - \log_{10}c)$$

Case V: Weak Poly basic acid/ Weak poly acidic base

H₃PO₄ will have three dissociation constants: Ka. Ka₂ & Ka₃. The calculation of pH is dependent upon.

 $pH = \frac{1}{2}[pKa_1 - logc]$ not dependent upon the other constants

Case VI: Mixture of two weak acids or two weak bases

$$[H^+] = \sqrt{Ka_1c_1 + Ka_2c_2}$$

C1 & C2 conc. after mixing

Case VIII: pH of Amphiprotic acids

 $pH = \frac{(pKa_1 + pKa_2)}{}$

Salt Hydrolysis

Hydrolysis Constant, KH

pH of solution

Weak Acid - Strong Base (pH > 7)

$$K_h = \frac{ch^2}{1 - h} = \frac{K_w}{K_h}$$

 $K_h = \frac{ch^2}{1 - h} = \frac{K_w}{K_h} \quad | pH = \frac{1}{2} [pK_w - (pK_b + logc)]$

Weak Base - Strong Acid (pH < 7)

$$K_h = \frac{ch^2}{1 - h} = \frac{K_w}{K_a}$$

 $K_h = \frac{ch^2}{1-h} = \frac{K_w}{K_a}$ $pH = \frac{1}{2}[pK_w + (pK_a + logc)]$

Weak Base - Weak Acid (pH depends on Ka and Kb)

$$K_h = \frac{h^2}{(1-h)^2} = \frac{K_w}{K_a \cdot K_b} pH = \frac{1}{2} [pK_w + (pK_a - pK_b)]$$

Buffer Solution			
Acidic Buffer	Basic Buffer		
WA + Salt of WA&SB	WB + Salt of WB&SA		
 H₂CO₃ + NaHCO₃ HNO₂ + NaNO₂ CH₃COOH + CH₃COONa 	 NH₄OH + NH₄CI PhNH₂ + PhNH₃+CI⁻ CH₃NH₂ + CHNH₃+CI⁻ 		

Henderson Equation

$$pH = pK_a + log_{10} \frac{[Salt]}{[Acid]} \text{ or } \frac{[Conjugated Base]}{[Acid]}$$

$$pOH = pK_b + log_{10} \frac{[Salt]}{[Base]} \text{ or } \frac{[Conjugated Acid]}{[Base]}$$

Buffer Capacity

Number of moles of strong acid/base per L of Soln.

Solubility Product (Ksp)

For a salt A_xB_y

$$s = \left[\frac{\left(K_{sp}\right)}{x^{x}.y^{y}}\right]^{\frac{1}{x+y}}$$

In case of Common ion, the $s = \left[\frac{\left(K_{sp}\right)}{x^{x}.y^{y}}\right]^{\frac{1}{x+y}} \begin{vmatrix} \text{Solubility decreases as .} \\ \text{moves backwards. E.g. AgCl in Cl} \\ s = \frac{K_{sp}AgCl}{\lceil Cl^{-} \rceil} \end{vmatrix}$

$$s = \frac{K_{sp}^{AgCl}}{[Cl^{-}]}$$

In case of complex formation, solubility of salt is maximum.

Ionic Product of salt

For a salt
$$A_x B_y$$

 $K_{IP} = [A^{y+}]^x [B^{x-}]^y$

$$K_{IP} > K_{sp}$$
 Ppt occurs

$$K_{IP} < K_{sp}$$
 Unsaturated soln $K_{IP} = K_{sp}$ Saturated soln

Indicator Theory

Indicators are either weak acids or weak bases and when dissolved in water, their dissociated form acquires a colour different from that of the undissociated form.

The human eye can detect the $HIn(aq) \rightleftharpoons H^+(aq) + In(aq)$ change in colour if the ratio of

the two forms of indicator ranges between 0.1 to 10.

$$K_{In} = \frac{[H^+][In^-]}{[HIn]} \text{ or } \frac{[HIn]}{[In^-]} = \frac{[H^+]}{K_{In}}$$

